Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(4)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35458418

RESUMO

Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) is a virulent pathogen of lepidopterans in the genera Heliothis and Helicoverpa, whereas Helicoverpa armigera multiple nucleopolyhedrovirus (HearSNPV) is a different virus species with a broader host range. This study aimed to examine the consequences of coocclusion of HearSNPV and HearMNPV on the pathogenicity, stability and host range of mixed-virus occlusion bodies (OBs). HearSNPV OBs were approximately 6-fold more pathogenic than HearMNPV OBs, showed faster killing by approximately 13 h, and were approximately 45% more productive in terms of OB production per larva. For coocclusion, H. armigera larvae were first inoculated with HearMNPV OBs and subsequently inoculated with HearSNPV OBs at intervals of 0-72 h after the initial inoculation. When the interval between inoculations was 12-24 h, OBs collected from virus-killed insects were found to comprise 41-57% of HearSNPV genomes, but the prevalence of HearSNPV genomes was greatly reduced (3-4%) at later time points. Quantitative PCR (qPCR) analysis revealed the presence of HearSNPV genomes in a small fraction of multinucleocapsid ODVs representing 0.47-0.88% of the genomes quantified in ODV samples, indicating that both viruses had replicated in coinfected host cells. End-point dilution assays on ODVs from cooccluded mixed-virus OBs confirmed the presence of both viruses in 41.9-55.6% of wells that were predicted to have been infected by a single ODV. A control experiment indicated that this result was unlikely to be due to the adhesion of HearSNPV ODVs to HearMNPV ODVs or accidental contamination during ODV band extraction. Therefore, the disparity between the qPCR and end-point dilution estimates of the prevalence of mixed-virus ODVs likely reflected virus-specific differences in replication efficiency in cell culture and the higher infectivity of pseudotyped ODVs that were produced in coinfected parental cells. Bioassays on H. armigera, Spodoptera frugiperda and Mamestra brassicae larvae revealed that mixed-virus OBs were capable of infecting heterologous hosts, but relative potency values largely reflected the proportion of HearMNPV present in each mixed-virus preparation. The cooccluded mixtures were unstable in serial passage; HearSNPV rapidly dominated during passage in H. armigera whereas HearMNPV rapidly dominated during passage in the heterologous hosts. We conclude that mixed-virus coocclusion technology may be useful for producing precise mixtures of viruses with host range properties suitable for the control of complexes of lepidopteran pests in particular crops, although this requires validation by field testing.


Assuntos
Mariposas , Nucleopoliedrovírus , Animais , Larva , Virulência
2.
Viruses ; 13(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578277

RESUMO

The genetic diversity of baculoviruses provides a sustainable agronomic solution when resistance to biopesticides seems to be on the rise. This genetic diversity promotes insect infection by several genotypes (i.e., multiple infections) that are more likely to kill the host. However, the mechanism and regulation of these virus interactions are still poorly understood. In this article, we focused on baculoviruses infecting the codling moth, Cydia pomonella: two Cydia pomonella granulovirus genotypes, CpGV-M and CpGV-R5, and Cryptophlebia peltastica nucleopolyhedrovirus (CrpeNPV). The influence of the order of ingestion of the virus genotypes, the existence of an ingestion delay between the genotypes and the specificity of each genotype involved in the success of multiple infection were studied in the case of Cydia pomonella resistance. To obtain a multiple infection in resistant insects, the order of ingestion is a key factor, but the delay for ingestion of the second virus is not. CrpeNPV cannot substitute CpGV-R5 to allow replication of CpGV-M.


Assuntos
Comportamento Alimentar , Granulovirus/genética , Granulovirus/fisiologia , Vírus Auxiliares/fisiologia , Mariposas/virologia , Replicação Viral , Animais , Variação Genética , Vírus Auxiliares/genética
3.
Front Microbiol ; 12: 810026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145496

RESUMO

Nucleopolyhedroviruses (NPV, Baculoviridae) that infect lepidopteran pests have an established record as safe and effective biological insecticides. Here, we describe a new approach for the development of NPV-based insecticides. This technology takes advantage of the unique way in which these viruses are transmitted as collective infectious units, and the genotypic diversity present in natural virus populations. A ten-step procedure is described involving genotypic variant selection, mixing, coinfection and intraspecific coocclusion of variants within viral occlusion bodies. Using two examples, we demonstrate how this approach can be used to produce highly pathogenic virus preparations for pest control. As restricted host range limits the uptake of NPV-based insecticides, this technology has recently been adapted to produce custom-designed interspecific mixtures of viruses that can be applied to control complexes of lepidopteran pests on particular crops, as long as a shared host species is available for virus production. This approach to the development of NPV-based insecticides has the potential to be applied across a broad range of NPV-pest pathosystems.

4.
Integr Environ Assess Manag ; 17(2): 465-479, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32915484

RESUMO

Environmental impact assessment studies are mandatory for major industrial or infrastructure projects in most countries. These studies are usually limited to on-site impacts during exploitation but do not consider indirect impacts generated off-site or those concerning other steps of the project, including dismantling. National regulations in various countries have recently begun to include these neglected impacts to obtain a better appreciation of project trade-offs. Several scientists have highlighted the substantial potential of using the life cycle assessment methodology to increase the level of detail and completeness of environmental impact assessment (EIA) studies. Even if mining activities are known to produce significant local impacts, their consequences outside an extraction site have not yet been well documented. The implementation of the life cycle assessment (LCA) methodology in the EIA procedure has been carried out in a Au mining project by separating on-site and off-site impacts during the entire life cycle of the mine from prospection to site restoration following the end of exploitation. Mining projects occur over large time periods and require diverse materials and processes. The main difficulty of such analysis is the data collection that needs to be extrapolated for some of the activities. Even with these limitations, the Afema case study highlighted the significant share of off-site impacts (from a spatial perspective) and the major contribution of the exploitation phase of the mine (from a temporal perspective). Operating activities, especially excavation, ore, and waste rock transportation, blasting, ore processing, and tailing treatments, are the main impacts produced during the exploitation phase and are involved in climate change, particulate matter formation, and land destruction. Therefore, this standardized LCA method should be recommended by the regulatory authorities for use in EIA procedures. Integr Environ Assess Manag 2021;17:465-479. © 2020 SETAC.


Assuntos
Monitoramento Ambiental , Ouro , Mudança Climática , Côte d'Ivoire , Mineração
5.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33187994

RESUMO

Alphabaculoviruses (Baculoviridae) are pathogenic DNA viruses of Lepidoptera that have applications as the basis for biological insecticides and expression vectors in biotechnological processes. These viruses have a characteristic physical structure that facilitates the transmission of groups of genomes. We demonstrate that coinfection of a susceptible insect by two different alphabaculovirus species results in the production of mixed-virus occlusion bodies containing the parental viruses. This occurred between closely related and phylogenetically more distant alphabaculoviruses. Approximately half the virions present in proteinaceous viral occlusion bodies produced following coinfection of insects with a mixture of two alphabaculoviruses contained both viruses, indicating that the viruses coinfected and replicated in a single cell and were coenveloped within the same virion. This observation was confirmed by endpoint dilution assay. Moreover, both viruses persisted in the mixed-virus population by coinfection of insects during several rounds of insect-to-insect transmission. Coinfection by viruses that differed in genome size had unexpected results on the length of viral nucleocapsids, which differed from those of both parental viruses. These results have unique implications for the development of alphabaculoviruses as biological control agents of insect pests.IMPORTANCE Alphabaculoviruses are used as biological insecticides and expression vectors in biotechnology and medical applications. We demonstrate that in caterpillars infected with particular mixtures of viruses, the genomes of different baculovirus species can be enveloped together within individual virions and occluded within proteinaceous occlusion bodies. This results in the transmission of mixed-virus populations to the caterpillar stages of moth species. Once established, mixed-virus populations persist by coinfection of insect cells during several rounds of insect-to-insect transmission. Mixed-virus production technology opens the way to the development of custom-designed insecticides for control of different combinations of caterpillar pest species.


Assuntos
Agentes de Controle Biológico , Inseticidas , Larva/virologia , Nucleopoliedrovírus , Spodoptera/virologia , Animais , Vírion
6.
Viruses ; 12(4)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290253

RESUMO

Most revues consider the work on Lymantria monarcha in central Europe [...].


Assuntos
Controle de Insetos , Vírus de Insetos/fisiologia , Controle Biológico de Vetores
7.
Viruses ; 12(1)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906433

RESUMO

Many steps in the baculovirus life cycle, from initial ingestion to the subsequent infection of all larval cells, remain largely unknown; primarily because it has hitherto not been possible to follow individual genomes and their lineages. Use of ANCHORTM technology allows a high intensity fluorescent labelling of DNA. When applied to a virus genome, it is possible to follow individual particles, and the overall course of infection. This technology has been adapted to enable labelling of the baculovirus Autographa californica Multiple NucleoPolyhedroVirus genome, as a first step to its application to other baculoviruses. AcMNPV was modified by inserting the two components of ANCHORTM: a specific DNA-binding protein fused to a fluorescent reporter, and the corresponding DNA recognition sequence. The resulting modified virus was stable, infectious, and replicated correctly in Spodoptera frugiperda 9 (Sf9) cells and in vivo. Both budded viruses and occlusion bodies were clearly distinguishable, and infecting cells or larvae allowed the infection process to be monitored in living cells or tissues. The level of fluorescence in the culture medium of infected cells in vitro showed a good correlation with the number of infectious budded viruses. A cassette that can be used in other baculoviruses has been designed. Altogether our results introduce for the first time the generation of autofluorescent baculovirus and their application to follow infection dynamics directly in living cells or tissues.


Assuntos
DNA Viral/metabolismo , Nucleopoliedrovírus/fisiologia , Replicação Viral , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fluorometria , Genoma Viral/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva/virologia , Microscopia de Fluorescência , Células Sf9 , Spodoptera
8.
Viruses ; 11(8)2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390849

RESUMO

Cydia pomonella granulovirus, in particular CpGV-M isolate, is used as a biological control against the codling moth (CM), Cydia pomonella. As a result of intensive control over the years, codling moth populations have developed resistance against this isolate. This resistance is now called type I resistance. Isolates, among them, CpGV-R5, have been found that are able to overcome type I resistance. Both CpGV-M and CpGV-R5 are used in orchards to control the codling moth. High resolution melting (HRM) has been adapted to differentiate between CpGV-M and CpGV-R5 isolates. Specific PCR primers have been designed for the CpGV p38 gene, encompassing the variable region responsible for the ability to overcome resistance. Because each amplicon has a specific melting point, it is possible to identify the CpGV-M and CpGV-R5 genotypes and to quantify their relative proportion. This method has been validated using mixtures of occlusion bodies of each isolate at various proportions. Then, the HRM has been used to estimate the proportion of each genotype in infected larvae or in occlusion bodies (OBs) extracted from dead larvae. This method allows a rapid detection of genotype replication and enables the assessment of either success or failure of the infection in field conditions.


Assuntos
Genótipo , Granulovirus/classificação , Granulovirus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real , Animais , Hemolinfa/virologia , Larva/virologia , Técnicas de Amplificação de Ácido Nucleico/normas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Temperatura de Transição , Proteínas Virais/genética
9.
Viruses ; 11(7)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284495

RESUMO

To test the importance of the host genotype in maintaining virus genetic diversity, five experimental populations were constructed by mixing two Cydiapomonella granulovirus isolates, the Mexican isolate CpGV-M and the CpGV-R5, in ratios of 99% M + 1% R, 95% M + 5% R, 90% M + 10% R, 50% M + 50% R, and 10% M + 90% R. CpGV-M and CpGV-R5 differ in their ability to replicate in codling moth larvae carrying the type I resistance. This ability is associated with a genetic marker located in the virus pe38 gene. Six successive cycles of replication were carried out with each virus population on a fully-permissive codling moth colony (CpNPP), as well as on a host colony (RGV) that carries the type I resistance, and thus blocks CpGV-M replication. The infectivity of offspring viruses was tested on both hosts. Replication on the CpNPP leads to virus lineages preserving the pe38 markers characteristic of both isolates, while replication on the RGV colony drastically reduces the frequency of the CpGV-M pe38 marker. Virus progeny obtained after replication on CpNPP show consistently higher pathogenicity than that of progeny viruses obtained by replication on RGV, independently of the host used for testing.


Assuntos
Granulovirus/genética , Mariposas/genética , Mariposas/virologia , Animais , Coevolução Biológica , Genes Virais/genética , Variação Genética , Granulovirus/patogenicidade , Granulovirus/fisiologia , Larva/genética , Larva/virologia , Fenótipo , Doenças das Plantas/parasitologia , Seleção Genética , Replicação Viral
10.
Water Sci Technol ; 76(3-4): 633-641, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28759445

RESUMO

The aim of this study is to investigate the potential of ultraviolet/visible (UV/Vis) spectrometry as a complementary method for routine monitoring of reclaimed water production. Robustness of the models and compliance of their sensitivity with current quality limits are investigated. The following indicators are studied: total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and nitrate. Partial least squares regression (PLSR) is used to find linear correlations between absorbances and indicators of interest. Artificial samples are made by simulating a sludge leak on the wastewater treatment plant and added to the original dataset, then divided into calibration and prediction datasets. The models are built on the calibration set, and then tested on the prediction set. The best models are developed with: PLSR for COD (Rpred2 = 0.80), TSS (Rpred2 = 0.86) and turbidity (Rpred2 = 0.96), and with a simple linear regression from absorbance at 208 nm (Rpred2 = 0.95) for nitrate concentration. The input of artificial data significantly enhances the robustness of the models. The sensitivity of the UV/Vis spectrometry monitoring system developed is compatible with quality requirements of reclaimed water production processes.


Assuntos
Reciclagem , Espectrofotometria Ultravioleta/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Qualidade da Água , Análise da Demanda Biológica de Oxigênio , Calibragem , Análise dos Mínimos Quadrados , Nitratos/análise , Esgotos/análise , Água/análise
11.
Integr Environ Assess Manag ; 13(6): 1113-1121, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28612353

RESUMO

Tertiary treatment process (including filtration and/or disinfection) is necessary to obtain a water quality suited for high-quality reuse from wastewater treatment. Industrial pilots representing small real-size treatment units were set up downstream of a conventional secondary treatment of a wastewater treatment plant in the South of France and their performance followed for 2 y. Life cycle assessment (LCA) methodology is used to compare the environmental impacts of different treatment processes. Five tertiary treatment trains were studied: 1) sand filtration (SF) + storage followed by ultraviolet (UV) dynamic reactor disinfection (SF-UVD), 2) sand filtration + UV batch reactor disinfection (SF-UVB), 3) ultrafiltration (UF), 4) ultrafiltration and UV batch reactor disinfection (UF-UVB), and 5) microfiltration (MF) and storage followed by dynamic UV disinfection (MF-UVD). The chosen functional unit is "To supply 1 m3 of water with a quality in compliance with the highest standard of the French reuse regulations." The combination of SF with UV disinfection or the use of UF alone was found to be equivalent in terms of environmental impact for most of the midpoint indicators chosen. Combination of UF with UV disinfection was significantly more impacting because the electricity consumption was nearly doubled. This study was conducted on an industrial pilot; it may thus be representative of industrial facilities implemented to treat higher water flows. Integr Environ Assess Manag 2017;13:1113-1121. © 2017 SETAC.


Assuntos
Reciclagem/métodos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Desinfecção , França , Águas Residuárias/estatística & dados numéricos
12.
Viruses ; 8(5)2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27213431

RESUMO

The detection of resistance in codling moth (Cydia pomonella) populations against the Mexican isolate of its granulovirus (CpGV-M), raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized-among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides.


Assuntos
Genótipo , Granulovirus/crescimento & desenvolvimento , Granulovirus/genética , Lepidópteros/virologia , Controle Biológico de Vetores/métodos , Animais , Análise de Sobrevida , Carga Viral
13.
Front Plant Sci ; 6: 566, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284088

RESUMO

The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents.

14.
Front Plant Sci ; 6: 381, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26150820

RESUMO

After more than 70 years of chemical pesticide use, modern agriculture is increasingly using biological control products. Resistances to conventional insecticides are wide spread, while those to bio-insecticides have raised less attention, and resistance management is frequently neglected. However, a good knowledge of the limitations of a new technique often provides greater sustainability. In this review, we compile cases of resistance to widely used bio-insecticides and describe the associated resistance mechanisms. This overview shows that all widely used bio-insecticides ultimately select resistant individuals. For example, at least 27 species of insects have been described as resistant to Bacillus thuringiensis toxins. The resistance mechanisms are at least as diverse as those that are involved in resistance to chemical insecticides, some of them being common to bio-insecticides and chemical insecticides. This analysis highlights the specific properties of bio-insecticides that the scientific community should use to provide a better sustainability of these products.

15.
J Invertebr Pathol ; 127: 101-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25797095

RESUMO

The "11K" gene family is notable for having homologs in both baculoviruses and entomopoxviruses and is classified as either type 145 or type 150, according to their similarity with the ac145 or ac150 genes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). One homolog of ac145 (sf138) and two homologs of ac150 (sf68 and sf95) are present in Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV). Recombinant bacmids lacking sf68, sf95 or sf138 (Sf68null, Sf95null and Sf138null, respectively) and the respective repair bacmids were generated from a bacmid comprising the complete virus genome. Occlusion bodies (OBs) of the Sf138null virus were ∼15-fold less orally infective to insects, which was attributed to a 100-fold reduction in ODV infectious titer. Inoculation of insects with Sf138null OBs in mixtures with an optical brightener failed to restore the pathogenicity of Sf138null OBs to that of the parental virus, indicating that the effects of sf138 deletion on OB pathogenicity were unlikely to involve an interaction with the gut peritrophic matrix. In contrast, deletion of sf68 and sf95 resulted in a slower speed-of-kill by 9h, and a concurrent increase in the yield of OBs. Phylogenetic analysis indicated that sf68 and sf95 were not generated after a duplication event of an ancestral gene homologous to the ac150 gene. We conclude that type 145 genes modulate the primary infection process of the virus, whereas type 150 genes appear to have a role in spreading systemic infection within the insect.


Assuntos
Nucleopoliedrovírus/genética , Controle Biológico de Vetores/métodos , Spodoptera/virologia , Sequência de Aminoácidos , Animais , Genes Virais , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Virais , Vírion/genética
16.
Viruses ; 6(12): 5135-44, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25533659

RESUMO

The NPP-R1 isolate of CpGV is able to replicate on CpGV-M-resistant codling moths. However, its efficacy is not sufficient to provide acceptable levels of control in natural (orchard) conditions. A laboratory colony derived from resistant codling moths was established, which exhibited a homogeneous genetic background and a resistance level more than 7000 fold. By successive cycles of replication of NPP-R1 in this colony, we observed a progressive increase in efficacy. After 16 cycles (isolate 2016-r16), the efficacy of the virus isolate was equivalent to that of CpGV-M on susceptible insects. This isolate was able to control both CpGV-M-susceptible and CpGV-M-resistant insects with similar efficacy. No reduction in the levels of occlusion body production in susceptible larvae was observed for 2016-r16 compared to CpGV-M.


Assuntos
Granulovirus/fisiologia , Mariposas/imunologia , Mariposas/virologia , Adaptação Fisiológica , Animais , Granulovirus/classificação , Granulovirus/genética , Mariposas/genética , Mariposas/fisiologia , Controle Biológico de Vetores
17.
J Virol ; 88(6): 3548-56, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24403587

RESUMO

UNLABELLED: Superinfection exclusion is the ability of an established virus to interfere with a second virus infection. This effect was studied in vitro during lepidopteran-specific nucleopolyhedrovirus (genus Alphabaculovirus, family Baculoviridae) infection. Homologous interference was detected in Sf9 cells sequentially infected with two genotypes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), each one expressing a different fluorescent protein. This was a progressive process in which a sharp decrease in the signs of infection caused by the second virus was observed, affecting not only the number of coinfected cells observed, but also the level of protein expression due to the second virus infection. Superinfection exclusion was concurrent with reorganization of cytoplasmic actin to F-actin in the nucleus, followed by budded virus production (16 to 20 h postinfection). Disruption of actin filaments by cell treatment with cytochalasin D resulted in a successful second infection. Protection against heterologous nucleopolyhedrovirus infection was also demonstrated, as productive infection of Sf9 cells by Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) was inhibited by prior infection with AcMNPV, and vice versa. Finally, coinfected cells were observed following inoculation with mixtures of these two phylogenetically distant nucleopolyhedroviruses--AcMNPV and SfMNPV--but at a frequency lower than predicted, suggesting interspecific virus interference during infection or replication. The temporal window of infection is likely necessary to maintain genotypic diversity that favors virus survival but also permits dual infection by heterospecific alphabaculoviruses. IMPORTANCE: Infection of a cell by more than one virus particle implies sharing of cell resources. We show that multiple infection, by closely related or distantly related baculoviruses, is possible only during a brief window of time that allows additional virus particles to enter an infected cell over a period of ca. 16 h but then blocks multiple infections as newly generated virus particles begin to leave the infected cell. This temporal window has two important consequences. First, it allows multiple genotypes to almost simultaneously infect cells within the host, thus generating genetically diverse virus particles for transmission. Second, it provides a mechanism by which different viruses replicating in the same cell nucleus can exchange genetic material, so that the progeny viruses may be a mosaic of genes from each of the parental viruses. This opens a completely new avenue of research into the evolution of these insect pathogens.


Assuntos
Actinas/metabolismo , Coinfecção/veterinária , Nucleopoliedrovírus/fisiologia , Spodoptera/virologia , Superinfecção/veterinária , Animais , Núcleo Celular/metabolismo , Coinfecção/metabolismo , Coinfecção/virologia , Citoplasma/metabolismo , Proteínas de Insetos/metabolismo , Nucleopoliedrovírus/genética , Células Sf9 , Spodoptera/metabolismo , Superinfecção/metabolismo , Superinfecção/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
PLoS One ; 8(10): e77683, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204916

RESUMO

A recombinant virus lacking the sf32 gene (Sf32null), unique to the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), was generated by homologous recombination from a bacmid comprising the complete viral genome (Sfbac). Transcriptional analysis revealed that sf32 is an early gene. Occlusion bodies (OBs) of Sf32null contained 62% more genomic DNA than viruses containing the sf32 gene, Sfbac and Sf32null-repair, although Sf32null DNA was three-fold less infective when injected in vivo. Sf32null OBs were 18% larger in diameter and contained 17% more nucleocapsids within ODVs than those of Sfbac. No significant differences were detected in OB pathogenicity (50% lethal concentration), speed-of-kill or budded virus production in vivo. In contrast, the production of OBs/larva was reduced by 39% in insects infected by Sf32null compared to those infected by Sfbac. The SF32 predicted protein sequence showed homology (25% identity, 44% similarity) to two adhesion proteins from Streptococcus pyogenes and a single N-mirystoylation site was predicted. We conclude that SF32 is a non-essential protein that could be involved in nucleocapsid organization during ODV assembly and occlusion, resulting in increased numbers of nucleocapsids within ODVs.


Assuntos
Nucleocapsídeo/genética , Nucleopoliedrovírus/genética , Spodoptera/virologia , Vírion/genética , Animais , DNA Viral/genética , Genes Essenciais/genética , Genoma Viral/genética , Genótipo , Larva/virologia , Proteínas Virais/genética , Replicação Viral/genética
19.
PLoS One ; 8(11): e78834, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223853

RESUMO

A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1) in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10) in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission) depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess.


Assuntos
Regulação Viral da Expressão Gênica , Vírus de Insetos/genética , Nucleopoliedrovírus/genética , Proteínas Estruturais Virais/genética , Animais , Deleção de Genes , Genoma Viral/genética , Genótipo , Interações Hospedeiro-Patógeno , Corpos de Inclusão Viral/genética , Vírus de Insetos/patogenicidade , Vírus de Insetos/fisiologia , Larva/virologia , Nucleopoliedrovírus/patogenicidade , Nucleopoliedrovírus/fisiologia , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Sf9 , Spodoptera/virologia , Transcrição Gênica , Proteínas Virais/genética , Virulência/genética , Replicação Viral/genética
20.
Pest Manag Sci ; 69(11): 1261-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23908014

RESUMO

BACKGROUND: In 2004, resistance to a commercial formulation of the Cydia pomonella granulovirus (CpGV) was identified in a field population of Cydia pomonella from an organic orchard in southern France. The genetic inheritance of this resistance was analysed in the resistant laboratory strain RGV. This strain was obtained using successive crosses between the resistant field population and a susceptible laboratory strain, SV, with selection for CpGV resistance at each generation. RESULTS: After eight generations of introgression of the resistant trait into SV, the RGV-8 strain exhibited 7000-fold higher resistance than SV. Mass-crossing experiments showed that resistance to CpGV is strongly dominant, sex dependent and under the control of a single major gene. However, the contribution of other genes is required to explain all of the data obtained in this study. These additional genes do not follow the laws of classical Mendelian transmission. CONCLUSION: Transmission of granulovirus resistance in the RGV-8 strain of C. pomonella cannot be fully explained by the effect of a locus located on the Z chromosome. The action of other factors needs to be considered.


Assuntos
Granulovirus/fisiologia , Proteínas de Insetos/genética , Mariposas/genética , Mariposas/virologia , Animais , Feminino , Genes Dominantes , Proteínas de Insetos/imunologia , Masculino , Mariposas/imunologia , Controle Biológico de Vetores , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...